
ECE 604, Lecture 17

October 30, 2018

In this lecture, we will cover the following topics:

• Duality Principle

• Reflection and Transmission–Single Interface Case

• Interesting Physical Phenomena:

– Total Internal Reflection

– Brewster Angle

– Surface Plasmonic Polariton

Additional Reading:

• Section 9.5 of Ramo, Whinnery, and Van Duzer.

• Lecture Notes 16, Prof. Dan Jiao.

• Section 4.1, Topic 6.1B, J.A. Kong, Electromagnetic Wave Theory.

• Lecture 20, ECE 350X.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on November 9, 2018 at 11 : 05: W.C. Chew and D. Jiao.
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1 Duality Principle

Duality principle exploits the inherent symmetry of Maxwell’s equations. Once a
set of E, H has been found to solve Maxwell’s equations for a certain geometry,
another set for a similar geometry can be found by invoking this principle.
Maxwell’s equations in the frequency domain, including the fictitious magnetic
sources, are

∇×E(r, ω) = −jωB(r, ω)−M(r, ω) (1.1)

∇×H(r, ω) = jωD(r, ω) + J(r, ω) (1.2)

∇ ·B(r, ω) = %m(r, ω) (1.3)

∇ ·D(r, ω) = %(r, ω) (1.4)

One way to make Maxwell’s equations invariant is to do the following substitu-
tion.

E→ H, H→ −E, D→ B, B→ −D (1.5)

M→ −J, J→M, %m → %, %→ %m (1.6)

The above swaps retain the right-hand rule for plane waves. When material
media is included, such that D = ε · E, B = µ · H, for anisotropic media,
Maxwell’s equations become

∇×E = −jωµ ·H−M (1.7)

∇×H = jωε ·E + J (1.8)

∇ · µ ·H = %m (1.9)

∇ · ε ·E = % (1.10)

In addition to the above swaps, one need further to swap

µ→ ε, ε→ µ (1.11)

1.1 Unusual Swaps

If one adopts swaps where seemingly the right-hand rule is not preserved, e.g.,

E→ H, H→ E, M→ −J, J→ −M, (1.12)

%m → −%, %→ −%m, µ→ −ε, ε→ −µ (1.13)

The above swaps will leave Maxwell’s equations invariant, but when applied to
a plane wave, the right-hand rule seems violated.

The deeper reason is that solutions to Maxwell’s equations are not unique,
since there is a time-forward as well as a time-reverse solution. In the frequency
domain, this shows up in the choice of the sign of the k vector where in a plane
wave k = ±ω√µε. When one does a swap of µ → −ε and ε → −µ, k is still
indeterminate, and one can always choose a root where the right-hand rule is
retained.
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2 Reflection and Transmission—Single Interface
case

We will derive the reflection coefficients for the single interface case. These
reflection coefficients are also called the Fresnel reflection coefficients because
they were first derive by Austin-Jean Fresnel (1788-1827). Note that he lived
before the completion of Maxwell’s equations in 1865. But when Fresnel derived
the reflection coefficients in 1823, it was based on the elastic theory of light, and
hence, the formulas are not exactly the same as what we are going to derive
(see Born and Wolf, Principles of Optics, p. 40).

2.1 TE Polarization (Perpendicular or E Polarization)

Figure 1:

To set up the above problem, the wave in Region 1 can be written as Ei + Er.
We assume plane wave polarized in the y direction where the wave vectors are
βββi = x̂βix + ẑβiz, βββr = x̂βrx − ẑβrz, βββt = x̂βtx + ẑβtz, respectively for the
incident, reflected, and transmitted waves. Then

Ei = ŷE0e
−jβββi·r = ŷE0e

−jβixx−jβizz (2.1)

and

Er = ŷRTEE0e
−jβββr·r = ŷRTEE0e

−jβrxx+jβrzz (2.2)

In Region 2, we only have transmitted wave; hence

Et = ŷTTEE0e
−jβββt·r = ŷTTEE0e

−jβtxx−jβtzz (2.3)
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In the above, the incident wave is known and hence, E0 is known. From (2.2)
and (2.3), RTE and TTE are unknowns yet to be sought. To find them, we
need two boundary conditions to yield two equations. These are tangential E
continuous and tangential H continuous, which are n̂×E continuous and n̂×H
continuous conditions at the interface.

Imposing n̂×E continuous at z = 0, we get

E0e
−jβixx +RTEE0e

−jβrxx = TTEE0e
−jβtxx, ∀x (2.4)

In order for the above to be valid for all x, it is necessary that βix = βrx = βtx,
which is also known as the phase matching condition.1 Thus, canceling common
terms on both sides of the equation, the above simplifies to

1 +RTE = TTE (2.5)

To impose n̂ ×H continuous, one needs to find the H field using ∇× E =
−jωµH, or that H = −jβββ ×E/(−jωµ) = βββ ×E/(ωµ). By so doing

Hi =
βββi ×Ei
ωµ1

=
βββi × ŷ
ωµ1

E0e
−jβββi·r =

ẑβix − x̂βiz
ωµ1

E0e
−jβββi·r (2.6)

Hr =
βββr ×Er
ωµ1

=
βββr × ŷ
ωµ1

RTEE0e
−jβββr·r =

ẑβrx + x̂βrz
ωµ2

RTEE0e
−jβββr·r (2.7)

Ht =
βββt ×Et
ωµ2

=
βββt × ŷ
ωµ2

TTEE0e
−jβββt·r =

ẑβtx − x̂βtz
ωµ2

TTEE0e
−jβββt·r (2.8)

Imposing n̂×H continuous or Hx continuous at z = 0, we have

βiz
ωµ1

E0e
−jβixx − βrz

ωµ1
RTEE0e

−jβrxx =
βtz
ωµ2

TTEE0e
−jβtxx (2.9)

As mentioned before, the phase-matching condition requires that βix = βrx =
βtx. The dispersion relation for plane waves requires that

β2
ix + β2

iz = β2
rx + β2

rz = ω2µ1ε1 = β2
1 (2.10)

β2
tx + β2

tz = ω2µ2ε2 = β2
2 (2.11)

Since βix = βrx = βtx = βx, it implies that βiz = βrz. Moreover, βtz = β2z 6=
β1z usually. Then (2.9) simplifies to

β1z
µ1

(1−RTE) =
β2z
µ2

TTE (2.12)

where β1z =
√
β2
1 − β2

x, and β2z =
√
β2
2 − β2

x.
Solving (2.5) and (2.12) yields

RTE =

(
β1z
µ1
− β2z

µ2

)/(
β1z
µ1

+
β2z
µ2

)
(2.13)

TTE = 2

(
β1z
µ1

)/(
β1z
µ1

+
β2z
µ2

)
(2.14)

1The phase-matching condition can also be proved by taking the Fourier transform of the
equation with respect to x.
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2.2 TM Polarization (Parallel or H Polarization)

Figure 2:

The solution to the TM polarization case can be obtained by invoking duality
principle where we do the substitution E→ H, H→ −E, and µ
 ε as shown
in Figure 2. The reflection coefficient for the TM magnetic field is then

RTM =

(
β1z
ε1
− β2z

ε2

)/(
β1z
ε1

+
β2z
ε2

)
(2.15)

TTM = 2

(
β1z
ε2

)/(
β1z
ε1

+
β2z
ε2

)
(2.16)

3 Interesting Physical Phenomena

Three interesting physical phenomena emerge from the solutions of the single-
interface problem. They are total internal reflection, Brewster angle effect, and
surface plasmonic resonance. We will look at them next.

3.1 Total Internal Reflection

Total internal reflection comes about because of phase matching also called
momentum matching. This phase-matching condition can be illustrated using
β-surfaces (same as k-surfaces in some literature), as shown in Figure ??.
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Figure 3: Courtesy of J.A. Kong, Electromagnetic Wave Theory. Here, k is
synonymous with β.

It turns out that because of phase matching, for certain interfaces, β2z be-
comes pure imaginary.
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Figure 4: Courtesy of J.A. Kong, Electromagnetic Wave Theory. Here, k is
synonymous with β.

As shown in Figures 3 and 4, because of the dispersion relation that β2
rx +

β2
rz = β2

ix + β2
iz = β2

1 , β2
tx + β2

tz = β2
2 , they are equations of two circles in 2D

whose radii are β1 and β2, respectively. The tips of the β vectors for Regions
1 and 2 have to be on a spherical surface in the βx, βy, and βz space in the
general 3D case, but in this figure, we only show a cross section of the sphere
assuming that βy = 0.

Phase matching implies that the x-component of the β vectors are equal to
each other as shown. One sees that θi = θr in Figure 4, and also as θi increases,
θt increases. For an optically less dense medium where β2 < β1, according to the
Snell’s law of refraction, the transmitted β will refract away from the normal,
as seen in the figure. Therefore, eventually the vector βt becomes parallel to
the x axis when βix = βrx = β2 = ω

√
µ2ε2 and θt = π/2. The incident angle at

which this happens is termed the critical angle θc.
Since βix = β1 sin θi = βrx = β1 sin θr = β2, or

sin θr = sin θi = sin θc =
β2
β1

=

√
µ2ε2√
µ1ε1

=
n2
n1

(3.1)

where n1 is the reflective index defined as c0/vi =
√
µiεi/

√
µ0ε0 where vi is the
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phase velocity of the wave in Region i. Hence,

θc = sin−1(n2/n1) (3.2)

When θi > θc. βx > β2 and β2z =
√
β2

2 − βx2 becomes pure imaginary.
When β2z becomes pure imaginary, the wave cannot propagate in Region 2,
or β2z = −jα2z, and the wave becomes evanescent. The reflection coefficient
(2.13) becomes of the form

RTE = (A− jB)/(A+ jB) (3.3)

It is clear that |RTE | = 1 and that RTE = ejθTE . Therefore, a total internally
reflected wave suffers a phase shift. A phase shift in the frequency domain
corresponds to a time delay in the time domain. Such a time delay is achieved
by the wave traveling laterally in Region 2 before being refracted back to Region
1. Such a lateral shift is called the Goos-Hanschen shift as shown in Figure 5.

Please be reminded that total internal reflection comes about entirely due
to the phase-matching condition when Region 2 is a faster medium than Region
1. Hence, it will occur with all manner of waves, such as elastic waves, sound
waves, seismic waves, quantum waves etc.

Figure 5: Goos-Hanschen Shift. Courtesy of Paul R. Berman (2012), Scholar-
pedia, 7(3):11584.

The guidance of a wave in a dielectric slab is due to total internal reflection
at the dielectric-to-air interface. The wave bounces between the two interfaces
of the slab, and creates evanescent waves outside, as shown in Figure 6. The
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guidance of waves in an optical fiber works by similar mechanism, as shown in
Figure 7.

Figure 6: Courtesy of E.N. Glytsis, NTUA, Greece.

Figure 7: Courtesy of Wikepedia.

3.2 Brewster Angle

Since most materials at optical frequencies have ε2 6= ε1, but µ2 ≈ µ1, the TM
polarization for light behaves differently from TE polarization. For RTM , it is
possible that RTM = 0 if

ε2β1z = ε1β2z (3.4)
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Squaring the above assuming µ1 = µ2, one gets

ε2
2(β1

2 − βx2) = ε1
2(β2

2 − βx2) (3.5)

Solving the above gives

βx = ω
√
µ

√
ε1ε2
ε1 + ε2

= β1 sin θ1 = β2 sin θ2 (3.6)

The latter two equations come from phase matching at the interface. Therefore,

sin θ1 =

√
ε2

ε1 + ε2
, sin θ2 =

√
ε1

ε1 + ε2
(3.7)

or that

sin2 θ1 + sin2 θ2 = 1, (3.8)

Then

sin θ2 = cos θ1 (3.9)

or that

θ1 + θ2 = π/2 (3.10)

This is used to explain why at Brewster angle, no light is reflected back to
Region 1. Figure 8 shows that the induced polarization dipoles in Region 2
always have their axes aligned in the direction of reflected wave. A dipole does
not radiate along its axis, which can be verified heuristically by field sketch and
looking at the Poynting vector. Therefore, these induced dipoles in Region 2 do
not radiate in the direction of the reflected wave.

10



Figure 8: Courtesy of J.A. Kong, EM Wave Theory.

Because of the Brewster angle effect, and that ε2 6= ε1, |RTM | ≤ |RTE | as
shown in Fig. 9. This phenomenon is used to design sun glasses to reduce road
glare for drivers. For light reflected off a road surface, they are predominantly
horizontally polarized. When sun glasses are made with vertical polarizers, they
will filter out and mitigate the reflected rays from the road surface.
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Figure 9:

3.3 Surface Plasmon Polariton

Surface plasmon polariton occurs for the same mathematical reason for the
Brewster angle effect but the physical mechanism is quite different. The reflec-
tion coefficient RTM can become infinite if, say, ε2 < 0, as in a plasma medium.

In this case, the criterion is

−ε2β1z = ε1β2z (3.11)

When the above is satisfied, RTM becomes infinite. This implies a reflected wave
exists when there is no incident wave. This is often encountered in a resonance
system. Here, there is a plasmonic resonance or propagating mode generated at
the interface.

Solving (3.11) after squaring it yields

βx = ω
√
µ

√
ε1ε2
ε1 + ε2

(3.12)

This is the same equation for the Brewster angle except now that ε2 is negative.
Even if ε2 < 0, but ε1 + ε2 < 0 is still possible so that the expression under the
square root sign (3.12) is positive. Thus, βx can be pure real. This corresponds
to a guided wave propagating in the x direction. When this happens,

β1z =

√
β1

2 − βx2 = ω
√
µ

[
ε1

(
1− ε2

ε1 + ε2

)]1/2
(3.13)

Since ε2 < 0, ε2/(ε1 + ε2) > 1, then β1z becomes pure imaginary. Moreover,

β2z =
√
β2

2 − βx2 and β2
2 < 0 making β2z becomes even a larger imaginary

number. This corresponds to a trapped wave at the interface. The wave decays
exponentially in both directions away from the interface and they are evanescent
waves. This mode is shown in Figure 10, and is the only case in electromagnetics
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where a single interface can guide a surface wave, while such phenomena abounds
for elastic waves.

When one operates close to the resonance of the mode so that the denom-
inator in (3.12) is almost zero, then βx can be very large. The wavelength
becomes very short in this case, and β1z and β2z become even larger imaginary
numbers. Hence, the mode becomes tightly confined to the surface, making the
confinement of the mode very tight. It portends use in tightly packed optical
components, and has caused some excitement in the optics community. But loss
is still an issue to be overcome here!

Figure 10: Courtesy of Wikipedia.

13


